

Light-trapping in polymer solar cells by processing with nanostructured Diatomaceous Earth

Lyndsey McMillon-Brown

Yale University | Transformative Materials and Devices Lab NASA GRC | Photovoltaic & Electrochemical Systems Branch

> Biomimicry Summit and Education Forum Ohio Aerospace Institute August 4, 2016

Outline

Introduction

- Alternative Energy
- Solar Cells
- Losses in Solar Cells
- Solutions to Cell Losses
 - Biomimetic Approach
 - Experimental Results
 - Simulation Results
- Future Directions
 - Design Rules
- Conclusions

Alternative Energy

U.S. energy consumption by energy source, 2014

Note: Sum of components may not equal 100% as a result of independent rounding.

Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.3 and 10.1 (March 2015), preliminary data

REN21 Renewables 2013. Global Status Report

Why solar?

- Sunlight is the most abundant source of renewable energy
- Solar field the area of Spain can fulfill global energy needs
- During operation
 - No pollution
 - No emission
 - No noise

The Solar Cell

- Converts sunlight directly to electricity
- Photon absorbed by semiconductor
- The electron is excited to the conduction band
- Creation of electronhole pair

The Solar Cell

Anode electrode Semiconductor

Active Layer

- Converts sunlight directly to electricity
- Photon absorbed by semiconductor
- The electron is excited to the conduction band
- Creation of electron-hole pair
- Collection of electrons in cathode
- Collection of holes in anode

Classes & Applications of Solar

∷NREL

Applications

- Space Exploration
- Defense & Military
- Residential Energy
- Emergency power
- Portable power supplies
- Educational
- Recreational

Options

- Organic vs. Inorganic
- Single vs. Multi-Junction
- Crystalline vs. Amorphous
- Flexible vs. Inflexible
- Thin Film
- Hybrid

Best Research-Cell Efficiencies

Bulk Heterojunction Solar Cells

M. He et al. J. Mater. Chem., 2012, **22**, 24253-24264

Losses in Solar Cells

Semiconductor

material

Light Trapping

- Proposed as early as 1965
- Increase optical path length

$$n_1 \sin \Theta_1 = n_2 \sin \Theta_2$$

$$\Theta_2 = \sin^{-1}\left(\frac{n_1}{n_2}\sin\Theta_1\right)$$

Internal Reflection

Light Trapping in Literature

Y. Liu, et al. J. Phys. D: Appl. Phys. 46 (2013) 24008

J. Zhao, et al. SOLMAT 42 (1996) 87

Laser Texturing

- Chemical Etching
- Nanowires
- Nanoholes
- Surface Texturing

M. Berginski, et al. J. Appl. Phys. **101** (2007) 74903

Light Trapping in Nature

W.L. Min, et al. Adv. Mater, 2008, **20**, 3914 D.G. Stavenga, et al. P. Roy Soc B-Biol Sci, 2006, **273**, 661

Z. Han, et al. Nanoscale, 2012, 4, 2879-2883Z. Han, et al. Nanoscale, 2013, 5, 8500-8506

Biomimetic Light Trapping Approach

- Diatom Algae
- Earth Abundant
- 3D Nanostructured silica frustule

Trap light for photosynthesis

Diatomaceous Earth (DE)

- Fossilized remains of diatom algae
- Photonic Crystal (PhC)
- Absorption spectrum matches chlorophyll
- Average length ~ 20 um
- Active layer thickness ~200 nm

Device Fabrication

L. McMillon-Brown, Marina Mariano, et al. Manuscript in Preparation

Optimal Cell Loading

Addition of DE allows a 36% thinner active layer to achieve comparable PCE to device with standard active layer thickness.

Pristine DE as Simulated Light Trap

Simulation Results

Further Applications of DE

- Plasmonic resonators
- Patterned electrodes
- Anti reflective coatings

L. Lu, et al. Nano Lett. 13(1) (2013) 59

S. Chandrasekaran, et al. Chem Commun. 50 (2014) 10441

Design Rules for DE Inspired Solar

The frustule or PhC replica:

- 1. must be applied within active layer to ensure photon absorption results in exciton generation
- 2. can be implemented in any solution processable solar cell
- 3. should be positioned in imbedded orientation for optimal device performance

Future Work

- Conduct experiments to create design rules for various types of solar modules
- Produce and test optimal simulated device
- Couple DE inspired PhC with other solar phenomena (plasmonic resonance, FRET) to further enhance device performance

Acknowledgements

- Prof. André D. Taylor, Prof. Barry P. Rand & Prof. Andrey Semichaevsky
- Dr. Marina Mariano
- Dr. Sara M. Hashmi
- YunHui L. Lin
- Jinyang Li
- Michael F. Piszczor
- Dr. Al Hepp
- Jeremiah McNatt

- Transformative Materials & Devices Lab Members
- Photovoltaic & Electrochemical Systems Branch Members
- Center for Research on Interface Structures and Phenomena (CRISP)
- Yale Institute for Nanoscience and Quantum Engineering (YINQE)
- Yale University Rock Preparation Laboratory

